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LETTER TO THE EDITOR 

New logarithmic term in the superfluid density scaling in 
confined geometries 

Vladimir Privman 
Institut fur Physik, Johannes-Gutenberg-Universitat Mainz, D-6500 Mainz, Federal Repub- 
lic of Germany and Department of Physics, Clarkson University, Potsdam, NY 13699-5820, 
USA? 

Received 31 May 1990 

Abstract. A new logarithmic scaling term is identified in the finite-size form of the helicity 
modulus, equivalent to the superfluid density fraction, in three dimensions. Implications 
of the pattern of the scaling behaviour found in the analyses of experimental data are 
discussed. 

The O(n)-symmetric order parameter systems have a critical point at non-zero T, for 
d > 2, and they obey hyperscaling for d < 4. (For d 3 4 the critical behaviour is 
mean-field, with logarithmic corrections at d = 4.) The quantity associated with the 
free energy increase due to the order parameter orientational gradients is the helicity 
modulus Y(T), see, e.g., Fisher et a1 (1973). In the case of superfluids ( n  = 2 )  in 3 ~ ,  

the helicity modulus is directly measurable. Indeed, Y/kBT is proportional to the 
superfluid density fraction to be denoted p. We use p in what follows even though 
most of the discussion applies for general n = 2,3, .  . . . For 2 <  d <4, the critical 
exponent of Y can be taken, by hyperscaling, as ( d  -2)v, where v is the correlation 
length exponent (all these properties are described in detail by Fisher et a1 1973). 

Recent experiments measuring p for 4He in confined geometries (Rhee et a1 1989, 
Gasparini and Rhee 1990), as well as earlier measurements of the specific heat and 
superfluid density (Chen and Gasparini 1978, Gasparini e? a1 1984), failed to fit the 
data by using the standard finite-size scaling forms (Fisher 1971). While the scaling 
‘data collapse’ works quite well, the exponent in the scaling combination tL”’ was 
found to differ from the expected bulk value, Y =I 0.67. (Here ? = ( T  - Tc)/  T, so that 
superfluidity in the bulk corresponds to t < 0 in our notation.) The effective v values 
were found to  differ not only from the bulk result but also for different geometries 
and quantities. 

Proposed explanations have ranged from detailed field-theoretical RG calculations 
(e.g. Huhn and Dohm 1988) to attempts to estimate the effects of the van der Waals 
interactions (Rhee et a1 1990). However, no single source of discrepancy has been 
identified to date to explain all the data. Thus, various possible modifications of the 
standard finite-size scaling form of Y and other quantities must be investigated in 
detail. One such result is reported in this letter. It is not claimed that the proposed 
new scaling term in p will suffice to explain the discrepancy in the v values (as indeed 
is found in the data analysis by Rhee e? a1 (1990); see further in the summary paragraph 
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below). However, it is hoped that the proposed scaling formulation will contribute 
towards the resolution of the experimental versus theoretical discrepancy, the full 
understanding of which must await future experimental and theoretical work. 

For 2 < d < 4, the finite-size hyperuniversality ideas (Privman and Fisher 1984) can 
be used to represent the scaling of p(  T, L )  in a finite-size geometry of the characteristic 
dimension L in the form 

psi”*( T, L)  = L2-dU(atL’/”) (1 )  
where the subscript denotes the ‘singular part’ (as L + a), and the scaling function U 
is universal in that it may depend on the geometry only (including boundary conditions 
and shape ratios), while all the microscopic interaction details dependence is contained 
in the metric factor a>O. Note that one can easily extend such scaling forms to allow 
for other scaling variables besides t, (see, e.g., Privman 1990). 

In addition to the part that becomes singular as L + a  and contains the leading 
bulk critical behaviour, for non-periodic boundary conditions there will be ‘regular’ 
background terms due to boundary effects such as surface, edge, corner and curvature 
associated contributions. These background terms were discussed extensively for the 
bulk free energy (Privman 1988, 1990), and for the interfacial free energy (Privman 
1990). Generally, they are inverse powers of L, e.g., 

However, it was noticed by Privman (1988, 1990) that when the ‘extensivity’, i.e., the 
leading power of L in ( l ) ,  of the singular part becomes equal to that of one of the 
background terms, a ‘resonant’ logarithmic scaling term may be obtained. In the case 
of p (  T, L ) ,  this happens in d = 3, when the leading power of L in (1) becomes 1/ L. 

The precise mechanism of the emergence of the logarithmic contribution here will 
be similar to that described by Privman (1988) for the free energy density. The amplitude 
4 , ( t )  in (2), and the scaling function U ( x )  in ( l ) ,  where x = atL”’, will both develop 
poles as d - 3 .  These pole terms have constant residues as functions of t or x, 
respectively. However, in the limit d + 3 they conspire (see Privman 1988) to yield the 
new logarithmic scaling term. We only state the final expression 

Here the new scaling function fi and the amplitude w are universal (possibly geometry 
dependent), while the background terms &, &, etc., and the metric factors a > 0 and 
I > 0 are non-universal. Note that 1 is quite arbitrary and it is separated out from the 
1/L background term only in order to make the argument of the logarithm 
dimensionless. 

Neglecting the 1 / L 2  background, and the non-scaling t-dependence of the 1 / L  
background contribution, the leading-order form to fit the experimental data to is 

where a can be further absorbed into the definition of fi (unless one considers several 
systems and tries to verify the scaling function universality-a situation realisable, e.g. 
if the pressure dependence of the finite-size superfluid transition is measured). By the 
‘conventional wisdom’ of the critical phenomena theory, the length f >  0 is expected 
to be microscopic. 
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Note that in the finite-size dominated pa? of the critical region, i.e. for LCC latl-”, 
the scaling function can be expanded, V ( x )  = U , +  u , x + .  . . , with the universal 
coefficients U,, ul ,  etc. In the part of the critical region in which the T <,Tc bulk critical 
behaviour sets in, i.e., for L >> \at/-”, while t < 0, the limiting form of U must be such 
that there will be no L-dependence in the purely bulk quantities. A standard argument 
then yields 

C(x+  --co)=u,JxJy-vw InJxJ+0(1) .  ( 5 )  

Thus, in the geometries for which the proposed ‘surface’ logarithmic scaling contribu- 
tion will be present, we find a universal logarithmic-in-ltl term in the 1/L finite-size 
correction, 

which can be measured if the onset of the bulk behaviour is studied for sizes larger 
than larl-’. Note that U, is universal but it is only a part of the leading bulk amplitude. 
A similar limiting behaviour applies for r 7 0, but the amplitude of the leading term 
is zero (U, is replaced by 0 in ( 5 )  and ( 6 ) ) .  

It is useful to emphasise that zero-dimensional (fully finite) and one-dimensional 
(cylindrical) systems have no superfluid transition. The finite-size quantity p in (3), 
(4), (6), etc. is then the apparent value observed in the 3~- l ike  response experiments. 
On the other hand in the two-dimensional (slab) finite-size geometry p is the actual, 
or the apparent, superfluid density fraction, or the combination of both types of 
contribution. No clear singularities or jumps were found in the finite-size scaling 
function in the experimental data fits of Rhee er a1 (1989, 1990). Their results seem 
to suggest that the 2~ superfluid transition in finite-L films lies below the three- 
dimensional T,. However, the author is not aware of any theoretical results on the 
issue of how, if at all, it approaches the 3~ transition temperature as L+m,  which 
would imply a jump in the finite-size scaling function (see Ambegaokar et a1 1980, 
Rhee er a1 1989). 

In the separately published experimental data fit by using (4), by Rhee er a1 (1990), 
it turns out that i is much larger than typical microscopic lengths. Furthermore the 
overall data fit is improved only in a limited way by allowing for the additional 
logarithmic term, provided one insists on the bulk v-value in the scaling term, i.e. a 
better data collapse is still found if instead of the additional new term one takes v as 
an adjustable parameter not necessarily set equal to the bulk correlation exponent 
value. Finally, there are two observations of a general nature that follow from the 
present work. First, it is suggested that the analysis of the experimental data may be 
more complicated than the simple scaling ‘data collapse’ in terms of the combination 
rL”’. This is in fact true not only for the new scaling term but also for the ‘simple’ 
regular background and for higher-order correction-to-scaling contributions not shown 
in ( l ) ,  (3)  and (4). Secondly, presence of terms which are pole-divergent as d + 3  
suggests that the extrapolation of some field-theoretical expansions for finite-size 
properties may involve previously unexpected features in integer dimensionalities. 
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262 of the Deutsche Forschungsgemeinschaft. 



L714 Letter to the Editor 

References 

Ambegaokar V, Halperin B I, Nelson D R and Siggia E D 1980 Phys. Rev. B 21 1806 
Chen T-P and Gasparini F M 1978 Phys. Rev. Left. 40 331 
Fisher M E 1971 Critical Phenomena, Proc. 1970 E Fermi Int. School ofphysics vol 51, ed M S Green (New 

Fisher M E, Barber M N and Jasnow D 1973 Phys. Rev. A 8 11 11 
Gasparini F M, Agnolet G and Reppy J D 1984 Phys. Rev. B 29 138 
Gasparini F M and Rhee I 1990 to be published 
Huhn Wand Dohm V 1988 Phys. Rev. Lett. 61 1368 
Privman V 1988 Phys. Rev. B 38 9261 
- 1990 Finite Size Scaling and Numerical Simulation of Statisfical Systems ed V Privman (Singapore: 

Privman V and Fisher M E 1984 Phys. Reu. B 30 322 
Rhee I, Bishop D J and Gasparini F M 1990 to be published 
Rhee I, Gasparini F M and Bishop D J 1989 Phys. Rev. Lett. 63 410 

York: Academic) p 1 

World Scientific) ch 1, p 1 


